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ABSTRACT Several states have begun harvesting gray wolves (Canis lupus), and these states and various
European countries are closely monitoring their wolf populations. To provide appropriate perspective for
determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-
term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park
in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota,
USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2
mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was
6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Ntþ1/Nt, was (0.88,
1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit
a density-independent model and a Ricker model to each time series, and in both cases we considered the
potential for observation error. Mean growth rates from the density-independent model were close to 0 for all
3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including
those describing annual variability or process variance, as providing useful summaries of the trajectories of
these populations. The estimates of these natural wolf population parameters can serve as benchmarks for
comparison with those of recovering wolf populations. Because our study populations were all from
circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not
confounded by changes in occupied area as would be the case with populations expanding their range, as are
wolf populations in many states). � 2015 The Wildlife Society.
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Graywolf (Canis lupus) populations have recovered in theUpper
Midwest and thenorthernRockies andhavebeen removed from
theFederalEndangeredSpeciesList in several states.Thus,wolf
management has been returned to individual states, and 6 states
have been managing wolves via public harvesting with varying
degrees of regulation (Mech 2013). Public harvesting of wolves
has beenmetwith considerable dismay by a large segment of the
public, and lawsuits challenging the delisting have been filed in
attempts to restore federal protection to these populations
(Mech2013).This sensitivity topublicwolfhuntinghasbrought
scrutiny to harvest regulations, quotas, seasons, and population
estimates (Creel and Rotella 2010 but see Gude et al. 2012).
Most state wolf-population estimates are necessarily mini-

mum estimates, but themedia and the public have interpreted
and disseminated them as actual numbers. Furthermore, the
media and the public then erroneously interpret decreases in
consecutive, annual, minimum estimates as actual population

decreases and attribute the apparent decreases to public
harvesting. However, wolf populations fluctuate considerably
under natural conditions (Fuller et al. 2003), and such natural
fluctuations can be mistakenly attributed to public harvesting.
Because of all these issues, it is useful to characterize long-term

trajectories of protected wolf populations to elucidate the
fluctuations that occur naturally. One way to characterize
population trajectories is to fit simple population-dynamic
models toobservedcounts (Dennis et al. 1991,Morris andDoak
2002). For example, density-independentmodels are frequently
used for performing population-viability assessments, and
although forecasts of future dynamics are often imprecise
(e.g., Fieberg and Ellner 2000), these models have been shown
toprovideuseful approximations tocomplexpopulationmodels,
including those with age-structure and density dependence
(e.g., Holmes 2004, Sabo et al. 2004,Holmes et al. 2007). New
statistical methods also have been recently developed that allow
one to account for observation errors when fitting population
models, which should result in more accurate estimates of
natural (or process) variabilitywhenpopulation size is estimated
with error (e.g., de Valpine 2002, 2003; Staples et al. 2004;
Nadeem and Lele 2012). We fit 2 simple population-dynamic
models—a density-independent model and a Ricker model
(Ricker 1954)—to 3 long-termdata sets available fromnational
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parks and protected populations, while allowing for various
forms of observation error. These population trajectories, and
the summaries provided by the fitted parameters, can provide an
appropriate context for interpreting fluctuations in harvested
populations, thus helping informmanagers, the media, and the
public.

STUDY AREAS

The 3 areas where long-term data on wolf-population
trajectories have been collected are Isle Royale National Park
in Lake Superior, Michigan, USA, the east-central Superior
National Forest in northeastern Minnesota, USA, and
Denali National Park, Alaska, USA. We chose data from
these 3 areas rather than from the recently recovered
populations of various states and Yellowstone National Park
because the latter populations were still establishing. In
addition, the populations other than that in Yellowstone
National Park were expanding in range, so population
changes there do not necessarily reflect density fluctuations.
Isle Royale was a 544 km2 island in northern Lake Superior

that had supported moose (Alces alces) since the early 1900s
and wolves since 1949. No other ungulate or large carnivore
existed there. Beavers (Castor canadensis) formed the only
other significant prey and were only available part of the year.
Isle Royale was 24 km from the nearest mainland, with little
documented wolf immigration or emigration (Vucetich et al.
2012). The wolf population had been highly inbred since its
founding in late 1949 (Wayne et al. 1991, Adams et al.
2011). The Isle Royale wolves were legally protected
throughout the study, and population data had been
recorded since 1959. Additional background information
is available from Mech (1966), Allen (1979), Peterson
(1977), and Vucetich and Peterson (2009).
The east-central Superior National Forest wolf-study area

in northeastern Minnesota comprised 2,060 km2 of the
Minnesota wolf range, which is contiguous with theOntario,
Canada, wolf range. Wolves were legally protected there
since 1971, and most of the area was relatively inaccessible
during autumn hunting seasons, although some poaching did
occur around the edges of the study area. The area supported
white-tailed deer (Odocoileus virginianus), moose, and
beavers as the main wolf prey; black bears (Ursus americanus)
also inhabited the area as a competitor. Further information
about the study area is available from Mech (2009).
Denali National Park and Preserve lay in south-central

Alaska, and its 17,270 km2 wolf-count area was part of the
entire Alaska wolf population range and harbors wolves as
well as moose, caribou (Rangifer tarandus), Dall’s sheep (Ovis
dalli), and beavers as prey. The park also supported both
black bears and grizzly bears (Urcus arctos). Wolves were
protected in the park but could be hunted and trapped in the
preserve, and some park wolves ventured out of the park and
were subjected to human harvesting. From 1986 to 2002 an
estimated 4–7% of Denali wolves were killed by humans each
year (Mech et al. 1998, Adams et al. 2008). Additional
background information about the area is available from
Murie (1944) and Mech et al. (1998).

METHODS

Wolf counts in all 3 areas were conducted in late winter, when
wolf populations were close to their annual minimum. On Isle
Royale, wolves were counted each winter from 1959 through
2014 by tracking them in snow via light, fixed-wing aircraft
until thewolveswere seen (Mech1966, Jordanetal. 1967,Wolfe
and Allen 1973, Peterson 1977, Vucetich and Peterson 2014).
Aerial radio tracking supplemented the snow-tracking invarious
years since 1989. The relatively small study area allows a
complete count of the wolves to be made each winter.
In the Superior National Forest study area, wolves were

counted each winter from 1967 through 2012 in a circum-
scribed area primarily by radiotracking and observation from
light, fixed-wing aircraft (Mech 1973, 1986, 2009).When not
all packs in the study area were radio tagged, aerial snow-
tracking was used, similar to Isle Royale, to locate and count
pack members via direct observation, but sometimes by
counting tracks in snow. The wolves were legally protected
from 1971 through early 2012; from 1967 through 1970, few
wolves were killed by hunters and/or trappers because most of
the area was inaccessible except on foot.
Similar techniques were used to count the wolves in Denali

National Park using aerial telemetry (Mech et al. 1998) from
1986 through 2013. However, because of the park’s much
larger size, the approach was modified by applying the density
of counted wolves (no. of wolves per total area of their
aggregate home ranges based on minimum-convex polygons)
to the entire wolf habitat in the park. The aggregate area of
wolf packs radiotracked each year averaged 14,208 km2� 490
(SE)or82%of the studyarea (U.S.NationalParkService2013).
Because all 3 of our study populations were from circum-

scribed areas, we emphasize that changes in their numbers
reflect changes in wolf densities, assuming no change in
detection probabilities or counting efficiency. By contrast,
populations having no boundaries, such as those inmost states
and countries, can increase or decrease in number by expansion
of their total distribution, aside from changes in density.

STATISTICAL METHODS

To compare the characteristics of the wolf-population trajecto-
ries from the 3 studies (Table 1), we fit 2 different stochastic
populationmodels—a density-independentmodel and aRicker
model (Ricker 1954)—to each time series of wolf population
counts. Let Nt represent the true population size at time t and
Xt= log(Nt). The Ricker model is given by the following:

N tþ1¼N t expðaþ bN t þ etÞ; et � N ð0; s2
p ) ; or equivalently

ð1Þ

X tþ1 ¼ X t þ aþ bN t þ et ; et � N ð0; s2
pÞ;

A value of b< 0 is suggestive of density dependence, in which
case the parameter a describes the growth rate at low population
densities. The density-independent model is formed by setting
b=0 in Equation 1. In both models, the et ’s represent normally
distributed deviations of the true log-population size from
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model-basedexpectedvalues.Theprocessvariance,s2
p , quantifies

the magnitude of these deviations.
As with most population surveys, the true population size

may differ from the reported count (i.e., observation errors
are likely present in the data). Yet these errors are expected to
be small because wolf packs in each of the populations were
intensely monitored with the aid of radio collared animals
and snow-track surveys. Although sampling error is relevant
to the Denali counts, errors associated with the Isle Royale
and Superior National Forest counts most likely result from
lone wolves that do not commonly associate with a single
pack; these errors are not likely to follow a common statistical
distribution. Thus, to assess robustness of the estimators of
population dynamic parameters to the assumed form of the
observation error model, we considered 2 alternatives (along
with a model that assumed no observation error). Let Ot

represent the observed count and Yt = log(Ot). We considered
the following models:

1. No observation error: Ot =Nt or equivalently, Yt =Xt.

2. Poisson observation errors: Ot � Poisson(Nt).

3. Log-normal observation errors: Yt � N(Xt, s
2
obs).

Models that allowforobservationerrorsaremosteasilyfitusing
Markov chain Monte Carlo techniques frequently used in
Bayesian applications, although data cloning, which uses
multiple copies of the data to swamp out any influence of prior
distributional assumptions, also allows for a frequentist
interpretation (Lele et al. 2007). The latter approach can be
implemented using the ‘pva’ function in the PVAClone
package of Program R (Nadeem and Lele 2012, Nadeem and
Solymos 2012, R Core Team 2013). We find the Bayesian
approach to inference appealing in this case because it allows one
to visualize uncertainty in the estimatedparameters using the full
posterior distribution, butwe also considereddata cloning as part
of a sensitivity analysis to evaluate the influence of our assumed
priors. Although we report only the results from the Bayesian
implementation, we compare these results to frequentist
estimates in a supplementary appendix (Supplementary Tables
S1 and S2; available on-line).
Bayesian methods require specification of a prior distribu-

tion for all model parameters (a, b, sp, and sobs [log-normal

observation error model only]). We used the default prior
distributions specified in the PVAClone package when
fitting models: a ~N(1, 100; no observation error and Poisson
observation error models), a~N(0, 100; log-normal observa-
tion error), b~N(0, 0.1), log(sp)~N(0,1), and log(sobs)~N(0,1;
log-normal observation error model only). For the Bayesian
implementation, we fit the models using open-source
software, Program R (R Core Team 2013) and JAGS
(Plummer 2003), with the R package R2jags used to
communicate between the 2 software platforms (Su and
Yajima 2012). We assessed convergence by running 3
independent chains and then inspecting the Gelman–Rubin
statistic (Brooks and Gelman 1998). This statistic compares
between- and within-chain variation, with values close to 1
suggesting convergence. We ran the models for 20,000
iterations after an initial burn-in of 5,000 iterations. In all
cases, the Gelman–Rubin statistics were �1.010, suggesting
convergence. We evaluated sensitivity of the estimates to the
assumed priors by also implementing the approach using data
cloning with 20 data clones, via the ‘pva’ function in the
PVAClone package (Nadeem and Lele 2012, Nadeem and
Solymos 2012; Supplementary Tables S1 and S2). Data and
R code to fit each of the models have been archived with the
University of Minnesota’s Digital Conservancy and are
accessible through a permanent Universal Resource Locater
(Fieberg and Mech 2014).

RESULTS

The 3 wolf-population trajectories we studied included 130
total years of data (Fig. 1). Minimum and maximum annual
growth rates, given by Ntþ1/Nt, among the 3 populations

Table 1. General characteristics of 3 population trajectories of wolves from protected areas in Isle Royale National Park in Lake Superior, Michigan, USA
(1959–2014); the east-central Superior National Forest in northeastern Minnesota, USA (1967–2012); and Denali National Park, Alaska, USA (1986–2013).

Characteristic Denali National Park Isle Royale Superior National Forest

Area (km2) 2,060 544 17,270
No. of yr 28 56 46
Mean size (SE) 91 (4.4) 23 (1.2) 63 (2.3)
Annual range 53–134 8–50 35–97
Percent yr above mean 54 43 39
Percent yr below mean 46 57 61
Max.:min. population 2.5 6.3 2.8
Max. annual growth rate, lt = (Ntþ1/Nt) 1.49 1.79 1.54
Min. annual growth rate 0.71 0.47 0.65
No/1,000 km2 3.1–7.8 14.7–91.9 17.0–47.1

Figure 1. Wolf population trajectories totaling 130 years for Denali National
Park, Alaska, USA; Isle Royale (IR) National Park, Michigan, USA; and the
east central Superior National Forest (SNF), Minnesota, USA.
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were 0.47 and 1.79, respectively (Table 1). Annual densities
varied from 3.1/1,000 km2 in Denali to 91.9/1,000 km2 on
Isle Royale and cover almost the full range of known wolf
densities (Fuller et al. 2003). Ratios between highest and
lowest annual densities within a population varied from
2.5–6.3. Of these measures, the Isle Royale population
included the most years of data and had the most extreme
ratio as well as the most extreme maximum annual increase
and density.

Estimates of a from the fit of the density-independent
model were similar and close to 0 for all 3 populations, with
95% credible intervals containing 0 regardless of the assumed
observation error model (Fig. 2; Table 2). When plotted
against the previous year’s population size, annual log-
growth rates, log(lt) = log(Ntþ1/Nt), exhibited a slight
negative trend (Supplementary Fig. S1), and estimates of
b in the Ricker model were negative for all 3 populations
with 95% credible intervals that abutted 0 regardless of the
assumed observation error model (Fig. 3; Table 3). In
general, however, the 2 models (density-independent,
Ricker) provided similar fits to the data (Fig. 4).

Estimates of the process standard deviation, sp, should be
smaller in models that account for observation error, and this
was the case for the Superior National Forest population and
to a lesser extent for Isle Royale (Figs. 2 and 3; Tables 2 and
3). By contrast, the estimate of sp for Denali was close to 0.2

for both stochastic population models and for all 3 models of
the observation error process (Tables 2 and 3). As a result, the
relative comparisons involving sp were somewhat dependent
on the assumed observation error model (Figs. 2 and 3).
Nonetheless, sp was always smaller for Superior National
Forest than Isle Royale (Figs. 2 and 3; Tables 2 and 3). The
estimate of sp for Denali was in-between (except in the
Poisson observation error model, where it was on par with
the Isle Royale estimate).
The observation error standard deviation, sobs, in the log-

normal observation error model was close to 0.1 for all 3
populations and for both population models, but estimates
were more uncertain for Denali and Superior National Forest
populations (Tables 2 and 3). Lastly, Bayesian and
frequentist implementations resulted in similar parameter
estimates. The main exceptions were the a parameter in the
Ricker model for Denali and the estimates of sobs for Denali
and Isle Royale, all of which were slightly closer to 0 in the
frequentist implementations (Supplementary Tables S1 and
S2). Differences were small, however, relative to the range of
uncertainty encompassed by the posterior distributions.

DISCUSSION

The 3 wolf populations we assessed represent the best
approximation available of the performance of unharvested

Figure 2. Posterior distributions from the fit of the density-independent model to the 3 time series of wolf population trajectories totaling 130 years in Denali
National Park, Alaska, USA (1986–2013); Isle Royale National Park, Michigan, USA (1959–2014); and the east central Superior National Forest, Minnesota,
USA (1967–2012). The top row corresponds to the model without observation error, themiddle row corresponds to themodel that assumes Poisson observation
error, and the last row corresponds to the model that assumes log-normal observation error. The density-independent model is given by
N tþ1=N t expðaþ etÞ; et � N ð0; s2

pÞ. The log-normal observation error model is given by Yt ~N(Xt, s
2
obs), where Yt is the log-observed count and Xt is

the log of the true population size.
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wolf-population trajectories. Both the SuperiorNational Forest
and Denali populations have been extant for many decades and
legally protected formost of their duration under study, but the
Isle Royale populationwas founded in 1949 (Mech 1966). All 3
fluctuatedgreatly in relation tochanges in theavailabilityof their
prey, which in turn were usually related to extremes in winter
weather (Mech 1973, Peterson 1977,Mech et al. 1998). It is of
interest that the Isle Royale population, although inbred,
insular, andmore variable, had a trajectory inmanyways similar
to that of the other populations. Founded by 1 female and 1 or 2
males and having incorporated genes from only 2 known
immigrants (Wolfe and Allen 1979, Adams et al. 2011, but

see Hedrick et al. 2014), the population has persisted for
65 years.
Much progress has been made in recent years developing

methods for fitting population dynamic models to count data
while allowing for both observation and process errors (e.g.,
de Valpine 2002, 2003; Staples et al. 2004; Nadeem and Lele
2012); yet these methods have had mixed success when
applied to real and simulated data. In particular, identifying
the correct form of the model, both in terms of its
deterministic and stochastic elements, can be challenging
(Dennis et al. 2006, Polansky et al. 2009, Clark et al. 2010,
Knape et al. 2011, Knape and de Valpine 2012). Further,

Table 2. Estimated parameters and 95% credible intervals from the fit of the density-independent modela to each of the 3 time series of wolf counts
conducted in Isle Royale National Park in Lake Superior, Michigan, USA (1959–2014); the east-central Superior National Forest in northeastern Minnesota,
USA (1967–2012); and Denali National Park, Alaska, USA (1986–2013). Counts totaled 130 years.

Parameter Observation model

Denali National Park Isle Royale Superior National Forest

Estimate 95% CI Estimate 95% CI Estimate 95% CI

a No error 0.00 (�0.08, 0.09) �0.01 (�0.09, 0.06) 0.01 (�0.05, 0.06)
Poisson 0.00 (�0.08, 0.08) �0.01 (�0.06, 0.04) 0.01 (�0.03, 0.04)

Log-normal 0.00 (�0.08, 0.08) �0.01 (�0.08, 0.05) 0.01 (�0.03, 0.04)
sp No error 0.22 (0.17, 0.29) 0.27 (0.22, 0.32) 0.18 (0.14, 0.22)

Poisson 0.20 (0.14, 0.28) 0.19 (0.13, 0.26) 0.11 (0.07, 0.15)
Log-normal 0.20 (0.14, 0.29) 0.23 (0.16, 0.30) 0.12 (0.08, 0.17)

sobs
b Log-normal 0.09 (0.03, 0.17) 0.11 (0.04, 0.19) 0.09 (0.05, 0.14)

a The density-independent model is given by N tþ1=N t expðaþ etÞ; et � N ð0; s2
pÞ.

b The log-normal observation error model is given by Yt � N(Xt, s
2
obs), where Yt is the log-observed count and Xt is the log of the true population size.

Figure 3. Posterior distributions from the fit of the Ricker model to the 3 time series of wolf population trajectories totaling 130 years in Denali National Park,
Alaska, USA (1986–2013); Isle Royale National Park, Michigan, USA (1959–2014); and the east central Superior National Forest, Minnesota, USA
(1967–2012). The top row corresponds to the model without observation error, the middle row corresponds to the model that assumes Poisson observation error,
and the last row corresponds to the model that assumes log-normal observation error. The Ricker model is given byN tþ1=N t expðaþ bN t þ etÞ; et � N ð0; s2

pÞ.
The log-normal observation error model is given by Yt ~N(Xt, s

2
obs), where Yt is the log-observed count and Xt is the log of the true population size.
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population projections can be highly sensitive to model
assumptions (e.g., Nadeem and Lele 2012). Given the
challenges of identifying the most appropriate model
structure, and also the simplified dynamics implied by these
models, we refrain from interpreting the parameters too
literally. In particular, we caution against interpreting the
large estimate of a in the Ricker model fit to the Denali
population as reflecting the growth rate that would occur
when population size is near 0 (a value well outside the range
of the observed data). Instead, we view the simple stochastic
population models as providing useful summaries of the
population trajectories of these populations. For example,
estimates of a from the density-independent model suggest
that annual changes in the populations have been positive as
often as negative over the length of the time series, and
estimates of sp suggest that fluctuations in size have been
greatest at Isle Royale, and lowest at Superior National
Forest, with Denali most likely lying somewhere in-between.
Possible reasons for the greater variability of the Isle Royale
population include the larger sample size (10–28 more yr
than the others, which may have captured more environ-
mental variation), the smaller population abundance (thus
less buffering and greater demographic stochasticity), the

relative lack of immigration and emigration, and the inbred
nature of the population.
The above conclusions were robust to the form of

observation error model. By contrast, estimates of sp, and
a and b in the Ricker model for the Superior National Forest
and Isle Royale populations were somewhat sensitive to the
assumed observation error model and implementation
approach. One could attempt to average posterior distribu-
tions across the different models, once provided with a set of
model weights. Information theoretic methods (e.g., Devi-
ance Information Criterion) are sometimes used for this
purpose, but these methods are not straightforward to
implement whenmodels contain missing data—as in the case
of the Poisson and log-normal observation error models
(Celeux et al. 2006). More importantly, summaries of
individual models, each with a different set of assumptions,
can often be more informative than a single weighted
summary (Ellner and Fieberg 2003).

MANAGEMENT IMPLICATIONS

We present estimates of population parameters that can
serve as benchmarks for comparison with those calculated

Table 3. Estimated parameters and 95% credible intervals from the fit of Ricker modela to each of the 3 time series of wolf counts conducted in Isle Royale
National Park in Lake Superior, Michigan, USA (1959–2014); the east-central Superior National Forest in northeastern Minnesota, USA (1967–2012); and
Denali National Park, Alaska, USA (1986–2013). Counts totaled 130 years.

Parameter Observation model

Denali National Park Isle Royale Superior National Forest

Estimate 95% CI Estimate 95% CI Estimate 95% CI

a No error 0.370 (0.02, 0.73) 0.170 (�0.02, 0.36) 0.190 (�0.02, 0.41)
Poisson 0.390 (0.03, 0.79) 0.110 (�0.06, 0.32) 0.090 (�0.07, 0.28)

Log-normal 0.410 (0.03, 0.9) 0.140 (�0.05, 0.33) 0.110 (�0.06, 0.31)
b No error �0.004 (�0.008, 0) �0.008 (�0.016, 0) �0.003 (�0.006, 0)

Poisson �0.004 (�0.008, 0) �0.006 (�0.014, 0) �0.001 (�0.004, 0)
Log-normal �0.004 (�0.01, 0) �0.007 (�0.015, 0) �0.002 (�0.005, 0)

sp No error 0.200 (0.15, 0.28) 0.260 (0.21, 0.32) 0.170 (0.14, 0.22)
Poisson 0.190 (0.13, 0.27) 0.200 (0.14, 0.27) 0.110 (0.07, 0.16)

Log-normal 0.190 (0.12, 0.27) 0.240 (0.18, 0.3) 0.130 (0.08, 0.18)
sobs

b Log-normal 0.100 (0.03, 0.22) 0.100 (0.03, 0.18) 0.090 (0.04, 0.14)

a The Ricker model is given by N tþ1=N t expðaþ bN t þ etÞ; et � N ð0; s2
pÞ.

b The log-normal observation error model is given by Yt � N(Xt, s
2
obs), where Yt is the log-observed count and Xt is the log of the true population size.

Figure 4. Fit of the density-independent (straight black lines) and Ricker model (curved gray lines) to each of the 3 time series of population counts,
assuming no observation error, of wolf population trajectories totaling 130 years in Denali National Park, Alaska, USA (1986–2013); Isle Royale (IR)
National Park, Michigan, USA (1959–2014); and the east central Superior National Forest (SNF), Minnesota, USA (1967–2013). Dotted lines give point-
wise 95% prediction intervals, accounting for both uncertainty in the estimated parameters and year-to-year variability in annual growth rates (due to the et
terms).
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from other wolf populations repopulating other areas. Wolf
densities in national parks such as Yellowstone and in
inaccessible wilderness can be expected to fluctuate
similarly, and wolf densities in populations subject to
harvesting can be compared with the 3 in this study so that
regulations can be adjusted to minimize chances of driving
wolf populations lower than managers might wish or to
prevent wolf populations from increasing more than
managers might want. Because our study populations
were all from circumscribed areas, fluctuations in them
represent fluctuations in densities (i.e., changes in numbers
are not confounded by changes in occupied area as would be
the case with populations expanding their range as are wolf
populations in many states). Thus care must be taken to
distinguish their behavior from those of uncircumscribed
populations.
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2010. The theta-logistic is unreliable for modelling most census data.
Methods in Ecology and Evolution 1:253–262.

Creel, S., and J. J. Rotella. 2010. Meta-analysis of relationships between
human offtake, total mortality and population dynamics of gray wolves
(Canis lupus). PLoS ONE 5(9):e12918.

Dennis, B., P. L. Munholland, and J. M. Scott. 1991. Estimation of growth
and extinction parameters for endangered species. Ecological Monographs
61:115–143.

Dennis, B., J. M. Ponciano, S. R. Lele,M. L. Taper, andD. F. Staples. 2006.
Estimating density dependence, process noise, and observation error.
Ecological Monographs 76:323–341.

de Valpine, P. 2002. Review of methods for fitting time-series models with
process and observation error, and likelihood calculations for nonlinear,
non-Gaussian state-space models. Bulletin of Marine Science 70:455–
471.

de Valpine, P. 2003. Better inferences from population-dynamics experi-
ments using Monte Carlo state-space likelihood methods. Ecology
84:3064–3077.

Ellner, S. P., and J. Fieberg. 2003. Using PVA for management in light of
uncertainty: effects of habitat, hatcheries, and harvest. Ecology 84:1359–
1369.

Fieberg, J., and S. P. Ellner. 2000. When is it meaningful to estimate an
extinction probability? Ecology 81:2040–2047.

Fieberg, J., and D. Mech. 2014. Growth rates and variances of unexploited
wolf populations in dynamic equilibria: data, R Code and supporting
results. University of Minnesota Digital Conservancy. Retrieved from
http://hdl.handle.net/11299/164048. Accessed 31 Aug 2014.

Fuller, T. K., L. D.Mech, and J. Fitts-Cochran. 2003. Population dynamics.
Pages 161–191 in L. D. Mech and L. Boitani, editors. Wolves: behavior,
ecology, and conservation. University of Chicago Press, Chicago, Illinois,
USA.

Gude, J. A., M. S. Mitchell, R. E. Russell, C. A. Sime, E. E. Bangs, L. D.
Mech, and R. R. Ream. 2012. Wolf population dynamics in the U.S.
Northern Rocky Mountains are affected by recruitment and human-
caused mortality. Journal of Wildlife Management 76:108–112.

Hedrick, P. W., R. O. Peterson, L. M. Vucetich, J. R. Adams, and J. A.
Vucetich. 2014. Genetic rescue in Isle Royale wolves: genetic analysis and
the collapse of the population. Conservation Genetics 15:1111–1121,
doi 10.1007/s10592–0140604-1

Holmes, E. E. 2004. Beyond theory to application and evaluation: diffusion
approximations for population viability analysis. Ecological Applications
14:1272–1293.

Holmes, E. E., J. L. Sabo, S. V. Viscido, andW. F. Fagan. 2007. A statistical
approach to quasi-extinction forecasting. Ecology Letters 10:1182–
1198.

Jordan, P. A., P. C. Shelton, and D. L. Allen. 1967. Numbers, turnover, and
social structure of the Isle Royale wolf population. American Zoologist
7:233–252.

Knape, J., and P. de Valpine. 2012. Are patterns of density dependence in the
Global Population Dynamics Database driven by uncertainty about
population abundance? Ecology Letters 15:17–23.

Knape, J., N. Jonzen, and M. Skold. 2011. On observation distributions for
state space models of population survey data. Journal of Animal Ecology
80:1269–1277.

Lele, S. R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum
likelihood estimation for complex ecological models using Bayesian
Markov chain Monte Carlo methods. Ecology Letters 10:551–563.

Mech, L. D. 1966. The wolves of Isle Royale. National Parks fauna series no.
7. U.S. Government Printing Office, Washington, D.C., USA.

Mech, L. D. 1973. Wolf numbers in the Superior National Forest of
Minnesota. U.S. Department of Agriculture Forest Service Research
Paper NC-97, St. Paul, Minnesota, USA.

Mech, L. D. 1986. Wolf numbers and population trend in the Superior
National Forest, 1967–1985. U.S. Department of Agriculture Forest
Service, North Central Forest Experiment 339 Station, Research Paper
NC-270, St. Paul, Minnesota, USA..

Mech, L. D. 2009. Long-term research on wolves in the Superior National
Forest. Pages 15–34 inA. P.Wydeven, E. J. Heske, and T. R. VanDeelen,
editors. Recovery of gray wolves in the Great Lakes Region of the United
States: an endangered species success story. Springer, New York, New
York, USA.

Mech, L. D. 2013. The challenge of wolf recovery: an ongoing dilemma for
state managers. The Wildlife Professional 7(1):32–37. http://news.
wildlife.org/featured/the-challenge-of-wolf-recovery.

Mech, L. D., L. G. Adams, T. J. Meier, J. W. Burch, and B.W. Dale. 1998.
The wolves of Denali. University of Minnesota Press, Minneapolis, USA.

Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology:
theory and practice of population viability analysis. Sinauer, Sunderland,
Massachusetts, USA.

Murie, A. 1944. The wolves of Mount McKinley. U.S. Department of the
Interior, National Park Service, Fauna Series 5, Washington, D.C., USA.

Nadeem, K., and S. R. Lele. 2012. Likelihood based population viability
analysis in the presence of observation error. Oikos. doi 10.1111/j.1600–
0706.2011.20010.x

Nadeem, K., and P. Solymos. 2012. PVAClone: population viability analysis
with data cloning. R package version 0. 1-1. http://CRAN.R-project.org/
package. Accessed 18 Aug 2014

Peterson, R. O. 1977. Wolf ecology and prey relationships on Isle Royale.
National Parks Service Fauna Series 11, Washington, D.C., USA.

Plummer, M. 2003. JAGS: a program for analysis of Bayesian graphical
models using Gibbs sampling. Pages 20–22 in K. Hornik and F. Leisch,
editors. Proceedings of the 3rd international workshop on distributed
statistical computing. Technische Universität Wien, Vienna, Austria.

Mech and Fieberg � Unexploited Wolf Populations 47

http://hdl.handle.net/11299/164048
http://news.wildlife.org/featured/the&x2010;challenge&x2010;of&x2010;wolf&x2010;recovery
http://news.wildlife.org/featured/the&x2010;challenge&x2010;of&x2010;wolf&x2010;recovery
http://CRAN.R&x2010;project.org/package
http://CRAN.R&x2010;project.org/package


Polansky, L., P. de Valpine, J. O. Lloyd-Smith, and W. M. Getz. 2009.
Likelihood ridges and multimodality in population growth rate models.
Ecology 90:2313–2320.

R Core Team. 2013. R: a language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/ Accessed 29 Oct. 2014.

Ricker, W. E. 1954. Stock and recruitment. Journal of the Fisheries
Research Board of Canada 11:559–623.

Sabo, J. L., E. E. Holmes, and P. Kareiva. 2004. Efficacy of simple viability
models in ecological risk assessment: does density dependence matter?
Ecology 85:328–341.

Staples, D. F., M. L. Taper, and B. Dennis. 2004. Estimating population
trend and process variation for PVA in the presence of sampling error.
Ecology 85:923–929.

Su, Y. S., andM. Yajima. 2012. R2jags: a package for running JAGS fromR.
http://CRAN.R-project.org/package=R2jags.Rpackage version 0.03–06.
Accessed 31 Aug. 2014.

U.S. National Park Service. 2013. Vital signs monitoring of wolf (Canis
lupus) distribution and abundance in Denali National Park and Preserve,
Central Alaska Network. Biological Year 2012 Report. Natural Resource
Data Series NPS/CAKN/NRDS—2013/###. Denali National Park and
Preserve, AK 99943.

Vucetich, J. A., M. P. Nelson, and R. O. Peterson. 2012. Should Isle Royale
wolves be reintroduced? A case study on wilderness management in a
changing world. The George Wright Forum 29:126–147.

Vucetich, J. A., and R. O. Peterson. 2009. Long-term research on wolves in
the Superior National Forest. Pages 35–48 inA. P.Wydeven, E. J. Heske,
and T. R. VanDeelen, editors. Recovery of gray wolves in the Great Lakes
Region of the United States: an endangered species success story. Springer,
New York, New York, USA.

Vucetich, J. A., and R. O. Peterson. 2014. Ecological studies of wolves on
Isle Royale. Michigan Technological University, Annual Report 2013–14,
Houghton, USA.

Wayne, R. K., D. A. Gilbert, N. Lehman, K. Hansen, A. Eisenhawer, D.
Girman, L. D. Mech, P. J. P. Gogan, U. S. Seal, and R. J. Krumenaker.
1991. Conservation genetics of the endangered Isle Royale gray wolf.
Conservation Biology 5:41–51.

Wolfe, M. L., and D. L. Allen. 1973. Continued studies of the status,
socialization, and relationships of Isle Royale wolves. Journal of Wildlife
Management 54:611–635.

Associate Editor: White.

SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article at the publisher’s web-site.

Supplementary Tables: Frequentist versus Bayesian
comparisons.

Supplementary Figure S1. Log growth rates, log(Ntþ1/Nt),
plotted against Nt for each of the 3 wolf population time
series, along with expected log-growth rates and 95%
credible intervals from the fit of the density-independent
model (top row) and the Ricker model (bottom row),
assuming no observation error.

Supplementary Table S1. Comparison of frequentist and
Bayesian parameter estimates for the density-independent
model.

Supplementary Table S2. Comparison of frequentist and
Bayesian parameter estimates for the Ricker model.

48 Wildlife Society Bulletin � 39(1)


